Rapid construction of solid-state magnetic resonance powder spectra from frequencies and amplitudes as applied to ESEEM.
نویسندگان
چکیده
In many Fourier-transform spectroscopies, such as pulse magnetic resonance (NMR, EPR), time-domain signals are acquired. Parameters are extracted from these signals by fitting numerical simulations to the experimental data. At present, simulations are often performed in frequency domain (FD). These computations generate a list of frequencies and amplitudes associated with the complex exponential components evolving during one or several variable time intervals. In order to compare simulations with experiments, this peak list is converted to a finite-length time-domain (TD) signal. This can be achieved either by directly evoluting the exponentials in time (direct method) or by rounding their frequencies and binning their amplitudes into a frequency-domain array (histogram method). The first approach is equivalent to a brute-force TD simulation and is slow for a large number of peaks. The second approach is a fast, but very crude approximation and is usually applied without considering in detail the errors involved. A third method introduced and illustrated here is based on the convolution and deconvolution of a short finite impulse response filter kernel. This convolution approach is much faster than the direct method and by orders of magnitude more accurate than the histogram method. For both TD and FD signals a detailed analysis of the errors and of the associated computational costs is presented. The convolution approach is applicable to any simulation problem where TD signals consist of a large number of complex exponentials. In particular, it is the method of choice for simulating 1D and 2D electron spin echo envelope modulation (ESEEM) spectra of disordered systems.
منابع مشابه
Peak suppression in ESEEM spectra of multinuclear spin systems.
We have observed a disturbing suppression effect in three-pulse ESEEM and HYSCORE spectra of systems with more than one nucleus coupled to the electron spin. For such systems, the ESEEM signal contains internuclear combination peaks of varying intensity. At the same time, the peaks at the basic ESEEM frequencies are reduced in intensity, up to the point of complete cancellation. For both three-...
متن کاملMultifrequency pulsed electron paramagnetic resonance study of the S2 state of the photosystem II manganese cluster.
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is employed to measure the strength of the hyperfine coupling of magnetic nuclei to the paramagnetic (S = 1/2) S2 form of photosystem II (PSII). Previous X-band-frequency ESEEM studies indicated that one or more histidine nitrogens are electronically coupled to the tetranuclear manganese cluster in the S2 state of PSII. ...
متن کاملRapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences.
The solid-state NMR spectra of many NMR active elements are often extremely broad due to the presence of chemical shift anisotropy (CSA) and/or the quadrupolar interaction (for nuclei with spin I > 1/2). These NMR interactions often give rise to wideline solid-state NMR spectra which can span hundreds of kHz or several MHz. Here we demonstrate that by using fast MAS, proton detection and dipola...
متن کاملAminoxyl Radicals of B/P Frustrated Lewis Pairs: Refinement of the Spin-Hamiltonian Parameters by Field- and Temperature-Dependent Pulsed EPR Spectroscopy
Q-band and X-band pulsed electron paramagnetic resonance spectroscopic methods (EPR) in the solid state were employed to refine the parameters characterizing the anisotropic interactions present in six nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs). The EPR spectra are characterized by the g-anisotropy as well as by nuclear hyperfine ...
متن کاملMultifrequency electron spin-echo envelope modulation studies of nitrogen ligation to the manganese cluster of photosystem II.
The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance
دوره 163 2 شماره
صفحات -
تاریخ انتشار 2003